Probable corticospinal tract control of spinal cord plasticity in the rat.
نویسندگان
چکیده
Descending activity from the brain shapes spinal cord reflex function throughout life, yet the mechanisms responsible for this spinal cord plasticity are poorly understood. Operant conditioning of the H-reflex, the electrical analogue of the spinal stretch reflex, is a simple model for investigating these mechanisms. An earlier study in the Sprague-Dawley rat showed that acquisition of an operantly conditioned decrease in the soleus H-reflex is not prevented by mid-thoracic transection of the ipsilateral lateral column (LC), which contains the rubrospinal, reticulospinal, and vestibulospinal tracts, and is prevented by transection of the dorsal column, which contains the main corticospinal tract (CST) and the dorsal column ascending tract (DA). The present study explored the effects of CST or DA transection on acquisition of an H-reflex decrease, and the effects of LC, CST, or DA transection on maintenance of an established decrease. CST transection prior to conditioning prevented acquisition of H-reflex decrease, while DA transection did not do so. CST transection after H-reflex decrease had been acquired led to gradual loss of the decrease over 10 days, and resulted in an H-reflex that was significantly larger than the original, naive H-reflex. In contrast, LC or DA transection after H-reflex decrease had been acquired did not affect maintenance of the decrease. These results, in combination with the earlier study, strongly imply that in the rat the corticospinal tract (CST) is essential for acquisition and maintenance of operantly conditioned decrease in the H-reflex and that other major spinal cord pathways are not essential. This previously unrecognized aspect of CST function gives insight into the processes underlying acquisition and maintenance of motor skills and could lead to novel methods for inducing, guiding, and assessing recovery of function after spinal cord injury.
منابع مشابه
Regeneration of corticospinal axons in the rat.
In the rat, afew long descending motor tracts capable of carrying an impulse and causing apropagated impulse in the ipsilateral sciatic nerve will regenerate after complete spinal cord transection. In this experiment such regeneration was found in both treated and control animals. Orthograde axonal transport of tritiated proline injected into the motor cortex labels only the corticospinal tract...
متن کاملPlasticity of motor network and function in the absence of corticospinal projection
Despite the obvious clinical interest, our understanding of how developmental mechanisms are redeployed during degeneration and regeneration after brain and spinal cord injuries remains quite rudimentary. In animal models of spinal cord injury, although spontaneous regeneration of descending axons is limited, compensation by intact corticospinal axons, descending tracts from the brainstem, and ...
متن کاملCortical Overexpression of Neuronal Calcium Sensor-1 Induces Functional Plasticity in Spinal Cord Following Unilateral Pyramidal Tract Injury in Rat
Following trauma of the adult brain or spinal cord the injured axons of central neurons fail to regenerate or if intact display only limited anatomical plasticity through sprouting. Adult cortical neurons forming the corticospinal tract (CST) normally have low levels of the neuronal calcium sensor-1 (NCS1) protein. In primary cultured adult cortical neurons, the lentivector-induced overexpressi...
متن کاملSpontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury.
Although it is believed that little recovery occurs after adult mammalian spinal cord injury, in fact significant spontaneous functional improvement commonly occurs after spinal cord injury in humans. To investigate potential mechanisms underlying spontaneous recovery, lesions of defined components of the corticospinal motor pathway were made in adult rats in the rostral cervical spinal cord or...
متن کاملPlasticity of Corticospinal Neural Control after Locomotor Training in Human Spinal Cord Injury
Spinal lesions substantially impair ambulation, occur generally in young and otherwise healthy individuals, and result in devastating effects on quality of life. Restoration of locomotion after damage to the spinal cord is challenging because axons of the damaged neurons do not regenerate spontaneously. Body-weight-supported treadmill training (BWSTT) is a therapeutic approach in which a person...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2002